Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
PLoS One ; 19(4): e0301659, 2024.
Article in English | MEDLINE | ID: mdl-38640113

ABSTRACT

Clinical prediction of nontuberculous mycobacteria lung disease (NTM-LD) progression remains challenging. We aimed to evaluate antigen-specific immunoprofiling utilizing flow cytometry (FC) of activation-induced markers (AIM) and IFN-γ enzyme-linked immune absorbent spot assay (ELISpot) accurately identifies patients with NTM-LD, and differentiate those with progressive from nonprogressive NTM-LD. A Prospective, single-center, and laboratory technician-blinded pilot study was conducted to evaluate the FC and ELISpot based immunoprofiling in patients with NTM-LD (n = 18) and controls (n = 22). Among 18 NTM-LD patients, 10 NTM-LD patients were classified into nonprogressive, and 8 as progressive NTM-LD based on clinical and radiological features. Peripheral blood mononuclear cells were collected from patients with NTM-LD and control subjects with negative QuantiFERON results. After stimulation with purified protein derivative (PPD), mycobacteria-specific peptide pools (MTB300, RD1-peptides), and control antigens, we performed IFN-γ ELISpot and FC AIM assays to access their diagnostic accuracies by receiver operating curve (ROC) analysis across study groups. Patients with NTM-LD had significantly higher percentage of CD4+/CD8+ T-cells co-expressing CD25+CD134+ in response to PPD stimulation, differentiating between NTM-LD and controls. Among patients with NTM-LD, there was a significant difference in CD25+CD134+ co-expression in MTB300-stimulated CD8+ T-cells (p <0.05; AUC-ROC = 0.831; Sensitivity = 75% [95% CI: 34.9-96.8]; Specificity = 90% [95% CI: 55.5-99.7]) between progressors and nonprogressors. Significant differences in the ratios of antigen-specific IFN-γ ELISpot responses were also seen for RD1-nil/PPD-nil and RD1-nil/anti-CD3-nil between patients with nonprogressive vs. progressive NTM-LD. Our results suggest that multiparameter immunoprofiling can accurately identify patients with NTM-LD and may identify patients at risk of disease progression. A larger longitudinal study is needed to further evaluate this novel immunoprofiling approach.


Subject(s)
Mycobacterium Infections, Nontuberculous , Pneumonia , Humans , Pilot Projects , Prospective Studies , Leukocytes, Mononuclear , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria
2.
Hum Immunol ; : 110770, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38433036

ABSTRACT

Post-acute sequelae of COVID-19 (PASC), or Long COVID, is a chronic condition following acute SARS-CoV-2 infection. Symptoms include exertion fatigue, respiratory issues, myalgia, and neurological manifestations such as 'brain fog,' posing concern for their debilitating nature and potential role in other neurological disorders. However, the underlying potential pathogenic mechanisms of the neurological complications of PASC is largely unknown. Herein, we investigated differences in antigen-specific T cell responses from the peripheral blood towards SARS-CoV-2, latent viruses, or neuronal antigens in 14 PASC individuals with neurological manifestations (PASC-N) versus 22 individuals fully recovered from COVID-19. We employed Activation Induced Marker (AIM), ICS and FluoroSpot assays to determine the specificity and magnitude of CD4+ and CD8+ T cell responses towards SARS-CoV-2 (Spike and rest of proteome), latent viruses (CMV, EBV), and several neuronal antigens. Overall, we observed similar antigen-specific T cell frequencies and cytokine effector T cell responses between PASC donors compared to recovered controls for all antigens tested (viral or autoantigen) in both CD4+ and CD8+ T cell compartments. Our findings suggest that PASC-N does not appear to be associated with changes in antigen-specific T cell responses towards a subset of disease-relevant targets, but more studies in a larger cohort are needed to confirm these unaltered responses.

3.
bioRxiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38496518

ABSTRACT

CD4 T cells are essential for immunity to M. tuberculosis (Mtb), and emerging evidence indicates that IL-17-producing Th17 cells contribute to immunity to Mtb. While identifying protective T cell effector functions is important for TB vaccine design, T cell antigen specificity is also likely to be important. To identify antigens that induce protective immunity, we reasoned that as in other pathogens, effective immune recognition drives sequence diversity in individual Mtb antigens. We previously identified Mtb genes under evolutionary diversifying selection pressure whose products we term Rare Variable Mtb Antigens (RVMA). Here, in two distinct human cohorts with recent exposure to TB, we found that RVMA preferentially induce CD4 T cells that express RoRγt and produce IL-17, in contrast to 'classical' Mtb antigens that induce T cells that produce IFNγ. Our results suggest that RVMA can be valuable antigens in vaccines for those already infected with Mtb to amplify existing antigen-specific Th17 responses to prevent TB disease.

4.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405939

ABSTRACT

Parkinson's disease (PD) is associated with autoimmune T cells that recognize the protein alpha-synuclein in a subset of individuals. Multiple neuroantigens are targets of autoinflammatory T cells in classical central nervous system autoimmune diseases such as multiple sclerosis (MS). Here, we explored whether additional autoantigenic targets of T cells in PD. We generated 15-mer peptide pools spanning several PD-related proteins implicated in PD pathology, including GBA, SOD1, PINK1, parkin, OGDH, and LRRK2. Cytokine production (IFNγ, IL-5, IL-10) against these proteins was measured using a fluorospot assay and PBMCs from patients with PD and age-matched healthy controls. This approach identified unique epitopes and their HLA restriction from the mitochondrial-associated protein PINK1, a regulator of mitochondrial stability, as an autoantigen targeted by T cells. The T cell reactivity was predominantly found in male patients with PD, which may contribute to the heterogeneity of PD. Identifying and characterizing PINK1 and other autoinflammatory targets may lead to antigen-specific diagnostics, progression markers, and/or novel therapeutic strategies for PD.

5.
Int J Infect Dis ; 141S: 106983, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417617

ABSTRACT

OBJECTIVES: Tuberculosis (TB) remains a global health challenge due to various factors, including delayed diagnoses leading to the spread of infection, limited efficacy of current vaccination strategies, and emergence of drug-resistant strains. Here, we explore the significance of Mycobacterium tuberculosis (Mtb)-specific antigens to overcome these challenges. METHODS: A narrative review exploring the dynamics of Mtb-specific antigens and the related T cell immune responses across the TB spectrum. RESULTS: A variety of antigens are expressed at different stages of Mtb infection, driving its diverse antigenic landscape and associated T cell functional heterogeneity. Recent advances in high-coverage genomic and proteomic approaches may lead to the identification and characterization of antigens/epitopes within the context of TB. CONCLUSION: Factors such as magnitude of memory response, cytokine profile, immunodominance, and conservation of epitopes should be emphasized as crucial parameters in assessing the potential efficacy of these antigens in diagnostics or vaccine research. Recognizing the antigenic repertoire of Mtb changes with the infection stage, it is important to assess the availability of different subsets of Mtb antigens across the spectrum of infection for more precise disease classifications. Targeting specific antigens holds promise as a pathway for developing specific immunological biomarkers to predict TB reactivation in populations.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Proteomics , Antigens, Bacterial , Interferon-gamma , Tuberculosis/diagnosis , Tuberculosis/prevention & control , Mycobacterium tuberculosis/genetics , Immunity , Epitopes
6.
Nat Commun ; 15(1): 765, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278794

ABSTRACT

There is still incomplete knowledge of which Mycobacterium tuberculosis (Mtb) antigens can trigger distinct T cell responses at different stages of infection. Here, a proteome-wide screen of 20,610 Mtb-derived peptides in 21 patients mid-treatment for active tuberculosis (ATB) reveals IFNγ-specific T cell responses against 137 unique epitopes. Of these, 16% are recognized by two or more participants and predominantly derived from cell wall and cell processes antigens. There is differential recognition of antigens, including TB vaccine candidate antigens, between ATB participants and interferon-gamma release assay (IGRA + /-) individuals. We developed an ATB-specific peptide pool (ATB116) consisting of epitopes exclusively recognized by ATB participants. This pool can distinguish patients with pulmonary ATB from IGRA + /- individuals from various geographical locations, with a sensitivity of over 60% and a specificity exceeding 80%. This proteome-wide screen of T cell reactivity identified infection stage-specific epitopes and antigens for potential use in diagnostics and measuring Mtb-specific immune responses.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Epitopes, T-Lymphocyte , Proteome , Interferon-gamma , Tuberculosis/microbiology , Latent Tuberculosis/diagnosis , Peptides , Antigens, Bacterial
7.
Curr Protoc ; 3(11): e934, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37966108

ABSTRACT

Epitopes recognized by T cells are a collection of short peptide fragments derived from specific antigens or proteins. Immunological research to study T cell responses is hindered by the extreme degree of heterogeneity of epitope targets, which are usually derived from multiple antigens; within a given antigen, hundreds of different T cell epitopes can be recognized, differing from one individual to the next because T cell epitope recognition is restricted by the epitopes' ability to bind to MHC molecules, which are extremely polymorphic in different individuals. Testing large pools encompassing hundreds of peptides is technically challenging because of logistical considerations regarding solvent-induced toxicity. To address this issue, we developed the MegaPool (MP) approach based on sequential lyophilization of large numbers of peptides that can be used in a variety of assays to measure T cell responses, including ELISPOT, intracellular cytokine staining, and activation-induced marker assays, and that has been validated in the study of infectious diseases, allergies, and autoimmunity. Here, we describe the procedures for generating and testing MPs, starting with peptide synthesis and lyophilization, as well as a step-by-step guide and recommendations for their handling and experimental usage. Overall, the MP approach is a powerful strategy for studying T cell responses and understanding the immune system's role in health and disease. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of peptide pools ("MegaPools") Basic Protocol 2: MegaPool testing and quantitation of antigen-specific T cell responses.


Subject(s)
CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Enzyme-Linked Immunospot Assay , Peptides , CD4-Positive T-Lymphocytes
8.
Front Immunol ; 14: 1127470, 2023.
Article in English | MEDLINE | ID: mdl-37122719

ABSTRACT

Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Antigens , Adaptive Immunity , Antibody Specificity
9.
NPJ Vaccines ; 8(1): 66, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160970

ABSTRACT

The only licensed tuberculosis (TB) vaccine, Bacillus Calmette Guerin (BCG), fails to reliably protect adolescents and adults from pulmonary TB, resulting in ~1.6 million deaths annually. Protein subunit vaccines have shown promise against TB in clinical studies. Unfortunately, most subunit vaccines require multiple administrations, which increases the risk of loss to follow-up and necessitates more complex and costly logistics. Given the well-documented adjuvant effect of BCG, we hypothesized that BCG co-administration could compensate for a reduced number of subunit vaccinations. To explore this, we developed an expression-optimized version of our H107 vaccine candidate (H107e), which does not cross-react with BCG. In the CAF®01 adjuvant, a single dose of H107e induced inferior protection compared to three H107e/CAF®01 administrations. However, co-administering a single dose of H107e/CAF®01 with BCG significantly improved protection, which was equal to BCG co-administered with three H107e/CAF®01 doses. Importantly, combining BCG with a single H107e/CAF®01 dose also increased protection in previously BCG-primed animals. Overall, a single dose of H107e/CAF®01 with BCG induced long-lived immunity and triggered BCG-specific Th17 responses. These data support co-administration of BCG and subunit vaccines in both BCG naïve and BCG-primed individuals as an improved TB vaccine strategy with reduced number of vaccination visits.

10.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37200108

ABSTRACT

Heterogeneity in human immune responses is difficult to model in standard laboratory mice. To understand how host variation affects Bacillus Calmette Guerin-induced (BCG-induced) immunity against Mycobacterium tuberculosis, we studied 24 unique collaborative cross (CC) mouse strains, which differ primarily in the genes and alleles they inherit from founder strains. The CC strains were vaccinated with or without BCG and challenged with aerosolized M. tuberculosis. Since BCG protects only half of the CC strains tested, we concluded that host genetics has a major influence on BCG-induced immunity against M. tuberculosis infection, making it an important barrier to vaccine-mediated protection. Importantly, BCG efficacy is dissociable from inherent susceptibility to tuberculosis (TB). T cell immunity was extensively characterized to identify components associated with protection that were stimulated by BCG and recalled after M. tuberculosis infection. Although considerable diversity is observed, BCG has little impact on the composition of T cells in the lung after infection. Instead, variability is largely shaped by host genetics. BCG-elicited protection against TB correlated with changes in immune function. Thus, CC mice can be used to define correlates of protection and to identify vaccine strategies that protect a larger fraction of genetically diverse individuals instead of optimizing protection for a single genotype.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Mice , Animals , Humans , BCG Vaccine/genetics , Tuberculosis/genetics , Tuberculosis/prevention & control , Mycobacterium tuberculosis/genetics , Genetic Background
11.
bioRxiv ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37090558

ABSTRACT

Tuberculosis caused by Mycobacterium tuberculosis is one of the leading causes of death from a single infectious agent. Identifying dominant epitopes and comparing their reactivity in different tuberculosis (TB) infection states can help design diagnostics and vaccines. We performed a proteome-wide screen of 20,610 Mtb derived peptides in 21 Active TB (ATB) patients 3-4 months post-diagnosis of pulmonary TB (mid-treatment) using an IFNγ and IL-17 Fluorospot assay. Responses were mediated exclusively by IFNγ and identified a total of 137 unique epitopes, with each patient recognizing, on average, 8 individual epitopes and 22 epitopes (16%) recognized by 2 or more participants. Responses were predominantly directed against antigens part of the cell wall and cell processes category. Testing 517 peptides spanning TB vaccine candidates and ESAT-6 and CFP10 antigens also revealed differential recognition between ATB participants mid-treatment and healthy IGRA+ participants of several vaccine antigens. An ATB-specific peptide pool consisting of epitopes exclusively recognized by participants mid-treatment, allowed distinguishing participants with active pulmonary TB from healthy interferon-gamma release assay (IGRA)+/- participants from diverse geographical locations. Analysis of longitudinal samples indicated decreased reactivity during treatment for pulmonary TB. Together, these results show that a proteome-wide screen of T cell reactivity identifies epitopes and antigens that are differentially recognized depending on the Mtb infection stage. These have potential use in developing diagnostics and vaccine candidates and measuring correlates of protection.

12.
mBio ; 14(2): e0022023, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36880755

ABSTRACT

Alternative delivery routes of the current Mycobacterium tuberculosis (Mtb) vaccine, intradermally (ID) delivered BCG, may provide better protection against tuberculosis, and be more easily administered. Here, we use rhesus macaques to compare the airway immunogenicity of BCG delivered via either ID or intragastric gavage vaccination. Ag-specific CD4 T cell responses in the blood were similar after BCG vaccination via gavage or ID injection. However, gavage BCG vaccination induced significantly lower T cell responses in the airways compared to intradermal BCG vaccination. Examining T cell responses in lymph node biopsies showed that ID vaccination induced T cell priming in skin-draining lymph nodes, while gavage vaccination induced priming in the gut-draining nodes, as expected. While both delivery routes induced highly functional Ag-specific CD4 T cells with a Th1* phenotype (CXCR3+CCR6+), gavage vaccination induced the co-expression of the gut-homing integrin α4ß7 on Ag-specific Th1* cells, which was associated with reduced migration into the airways. Thus, in rhesus macaques, the airway immunogenicity of gavage BCG vaccination may be limited by the imprinting of gut-homing receptors on Ag-specific T cells primed in intestinal lymph nodes. IMPORTANCE Mycobacterium tuberculosis (Mtb) is a leading cause of global infectious disease mortality. The vaccine for Mtb, Bacillus Calmette-Guérin (BCG), was originally developed as an oral vaccine, but is now given intradermally. Recently, clinical studies have reevaluated oral BCG vaccination in humans and found that it induces significant T cell responses in the airways. Here, we use rhesus macaques to compare the airway immunogenicity of BCG delivered intradermally or via intragastric gavage. We find that gavage BCG vaccination induces Mtb-specific T cell responses in the airways, but to a lesser extent than intradermal vaccination. Furthermore, gavage BCG vaccination induces the gut-homing receptor a4ß7 on Mtb-specific CD4 T cells, which was associated with reduced migration into the airways. These data raise the possibility that strategies to limit the induction of gut-homing receptors on responding T cells may enhance the airway immunogenicity of oral vaccines.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , BCG Vaccine , Macaca mulatta , Lung/microbiology , Tuberculosis/prevention & control , Th1 Cells , Mycobacterium bovis/genetics , CD4-Positive T-Lymphocytes , Vaccination
14.
J Neurol Sci ; 444: 120510, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36495691

ABSTRACT

BACKGROUND AND OBJECTIVES: Parkinson's disease (PD) is associated with a heightened inflammatory state, including activated T cells. However, it is unclear whether these PD T cell responses are antigen specific or more indicative of generalized hyperresponsiveness. Our objective was to measure and compare antigen-specific T cell responses directed towards antigens derived from commonly encountered human pathogens/vaccines in patients with PD and age-matched healthy controls (HC). METHODS: Peripheral blood mononuclear cells (PBMCs) from 20 PD patients and 19 age-matched HCs were screened. Antigen specific T cell responses were measured by flow cytometry using a combination of the activation induced marker (AIM) assay and intracellular cytokine staining. RESULTS: Here we show that both PD patients and HCs show similar T cell activation levels to several antigens derived from commonly encountered human pathogens/vaccines in the general population. Similarly, we also observed no difference between HC and PD in the levels of CD4 and CD8 T cell derived cytokines produced in response to any of the common antigens tested. These antigens encompassed both viral (coronavirus, rhinovirus, respiratory syncytial virus, influenza, cytomegalovirus) and bacterial (pertussis, tetanus) targets. CONCLUSIONS: These results suggest the T cell dysfunction observed in PD may not extend itself to abnormal responses to commonly encountered or vaccine-target antigens. Our study supports the notion that the targets of inflammatory T cell responses in PD may be more directed towards autoantigens like α-synuclein (α-syn) rather than common foreign antigens.


Subject(s)
Parkinson Disease , Vaccines , Humans , T-Lymphocytes , Leukocytes, Mononuclear , Cytokines
15.
HLA ; 101(2): 124-137, 2023 02.
Article in English | MEDLINE | ID: mdl-36373948

ABSTRACT

Several HLA allelic variants have been associated with protection from or susceptibility to infectious and autoimmune diseases. Here, we examined whether specific HLA alleles would be associated with different Mycobacterium tuberculosis (Mtb) infection outcomes. The HLA alleles present at the -A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, and -DRB3/4/5 loci were determined in a cohort of 636 individuals with known Mtb infection outcomes from South Africa and the United States. Among these individuals, 203 were QuantiFERON (QFT) negative, and 433 were QFT positive, indicating Mtb exposure. Of these, 99 QFT positive participants either had active tuberculosis (TB) upon enrollment or were diagnosed in the past. We found that DQA1*03:01, DPB1*04:02, and DRB4*01:01 were significantly more frequent in individuals with active TB (susceptibility alleles), as judged by Odds Ratios and associated p-values, while DPB1*105:01 was associated with protection from active TB. Peripheral blood mononuclear cells (PMBCs) from a subset of individuals were stimulated with Mtb antigens, revealing individuals who express any of the three susceptibility alleles were associated with lower magnitude of responses. Furthermore, we defined a gene signature associated with individuals expressing the susceptibility alleles that was characterized by lower expression of APC-related genes. In summary, we have identified specific HLA alleles associated with susceptibility to active TB and found that the expression of these alleles was associated with a decreased Mtb-specific T cell response and a specific gene expression signature. These results will help understand individual risk factors in progressing to active TB.


Subject(s)
Transcriptome , Tuberculosis , Humans , Gene Frequency , Alleles , Leukocytes, Mononuclear , Tuberculosis/genetics , Haplotypes , HLA-DRB1 Chains/genetics
16.
Front Immunol ; 13: 1016038, 2022.
Article in English | MEDLINE | ID: mdl-36263044

ABSTRACT

Immunological mechanisms of susceptibility to nontuberculous mycobacterial (NTM) disease are poorly understood. To understand NTM pathogenesis, we evaluated innate and antigen-specific adaptive immune responses to Mycobacterium avium complex (MAC) in asymptomatic individuals with a previous history of MAC lung disease (MACDZ). We hypothesized that Mav-specific immune responses are associated with susceptibility to MAC lung disease. We measured MAC-, NTM-, or MAC/Mtb-specific T-cell responses by cytokine production, expression of surface markers, and analysis of global gene expression in 27 MACDZ individuals and 32 healthy controls. We also analyzed global gene expression in Mycobacterium avium-infected and uninfected peripheral blood monocytes from 17 MACDZ and 17 healthy controls. We were unable to detect increased T-cell responses against MAC-specific reagents in MACDZ compared to controls, while the responses to non-mycobacteria derived antigens were preserved. MACDZ individuals had a lower frequency of Th1 and Th1* T-cell populations. In addition, MACDZ subjects had lower transcriptional responses in PBMCs stimulated with a mycobacterial peptide pool (MTB300). By contrast, global gene expression analysis demonstrated upregulation of proinflammatory pathways in uninfected and M. avium-infected monocytes, i.e. a hyperinflammatory in vitro response, derived from MACDZ subjects compared to controls. Together, these data suggest a novel immunologic defect which underlies MAC pathogenesis and includes concurrent innate and adaptive dysregulation which persists years after completion of treatment.


Subject(s)
Lung Diseases , Mycobacterium avium-intracellulare Infection , Humans , Mycobacterium avium Complex , Monocytes , Lung Diseases/microbiology , T-Lymphocytes , Cytokines
17.
Methods Mol Biol ; 2574: 123-131, 2022.
Article in English | MEDLINE | ID: mdl-36087199

ABSTRACT

Parkinson's disease (PD) is a widely prevalent chronic neurodegenerative disease. The disease is characterized by loss of dopaminergic neurons with abnormal aggregation of α-synuclein (α-syn). The misfolded deposition of α-syn is known to mount robust adaptive immune response by activating T cells. Here, we show that peripheral mononuclear cells when stimulated with a α-syn-derived peptide pool activate α-syn-specific T cells that produce cytokines.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Dopaminergic Neurons , Humans , T-Lymphocytes , alpha-Synuclein
18.
Circ Res ; 131(3): 258-276, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35766025

ABSTRACT

BACKGROUND: CD (cluster of differentiation) 4+ T-cell responses to APOB (apolipoprotein B) are well characterized in atherosclerotic mice and detectable in humans. CD4+ T cells recognize antigenic peptides displayed on highly polymorphic HLA (human leukocyte antigen)-II. Immunogenicity of individual APOB peptides is largely unknown in humans. Only 1 HLA-II-restricted epitope was validated using the DRB1*07:01-APOB3036-3050 tetramer. We hypothesized that human APOB may contain discrete immunodominant CD4+ T-cell epitopes that trigger atherosclerosis-related autoimmune responses in donors with diverse HLA alleles. METHODS: We selected 20 APOB-derived peptides (APOB20) from an in silico screen and experimentally validated binding to the most commonly occurring human HLA-II alleles. We optimized a restimulation-based workflow to evaluate antigenicity of multiple candidate peptides in HLA-typed donors. This included activation-induced marker assay, intracellular cytokine staining, IFNγ (interferon gamma) enzyme-linked immunospot and cytometric bead array. High-throughput sequencing revealed TCR (T-cell receptor) clonalities of APOB-reactive CD4+ T cells. RESULTS: Using stringent positive, negative, and crossover stimulation controls, we confirmed specificity of expansion-based protocols to detect CD4+ T cytokine responses to the APOB20 pool. Ex vivo assessment of AIM+CD4+ T cells revealed a statistically significant autoimmune response to APOB20 but not to a ubiquitously expressed negative control protein, actin. Resolution of CD4+ T responses to the level of individual peptides using IFNγ enzyme-linked immunospot led to the discovery of 6 immunodominant epitopes (APOB6) that triggered robust CD4+ T activation in most donors. APOB6-specific responding CD4+ T cells were enriched in unique expanded TCR clonotypes and preferentially expressed memory markers. Cytometric bead array analysis detected APOB6-induced secretion of both proinflammatory and regulatory cytokines. In clinical samples from patients with angiographically verified coronary artery disease, APOB6 stimulation induced higher activation and memory phenotypes and augmented secretion of proinflammatory cytokines TNF (tumor necrosis factor) and IFNγ, compared with patients with low coronary artery disease. CONCLUSIONS: Using 3 cohorts, each with ≈20 donors, we discovered and validated 6 immunodominant, HLA-II-restricted APOB epitopes. The immune response to these APOB epitopes correlated with coronary artery disease severity.


Subject(s)
Coronary Artery Disease , Animals , Apolipoproteins B/metabolism , CD4-Positive T-Lymphocytes , Coronary Artery Disease/metabolism , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/metabolism , Humans , Interferon-gamma/metabolism , Major Histocompatibility Complex , Mice , Peptides/genetics
19.
J Parkinsons Dis ; 12(s1): S129-S136, 2022.
Article in English | MEDLINE | ID: mdl-35754290

ABSTRACT

Inflammation has increasingly become a focus of study in regards to Parkinson's disease (PD). Moreover, both central and peripheral sources of inflammation have been implicated in the pathogenesis of PD. Central inflammation consisting of activated microglia, astroglia, and T cell responses within the PD central nervous system; and peripheral inflammation referring to activated innate cells and T cell signaling in the enteric nervous system, gastrointestinal tract, and blood. This review will highlight important work that further implicates central and peripheral inflammation in playing a role in PD. We also discuss how these two distant inflammations appear related and how that may be mediated by autoantigenic responses to α-syn.


Subject(s)
Enteric Nervous System , Parkinson Disease , Enteric Nervous System/pathology , Humans , Immunity , Inflammation , Microglia , Parkinson Disease/pathology , alpha-Synuclein
20.
Cell Rep ; 39(9): 110896, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35649361

ABSTRACT

HIV/Mycobacterium tuberculosis (Mtb) co-infected individuals have an increased risk of tuberculosis prior to loss of peripheral CD4 T cells, raising the possibility that HIV co-infection leads to CD4 T cell depletion in lung tissue before it is evident in blood. Here, we use rhesus macaques to study the early effects of simian immunodeficiency virus (SIV) co-infection on pulmonary granulomas. Two weeks after SIV inoculation of Mtb-infected macaques, Mtb-specific CD4 T cells are dramatically depleted from granulomas, before CD4 T cell loss in blood, airways, and lymph nodes, or increases in bacterial loads or radiographic evidence of disease. Spatially, CD4 T cells are preferentially depleted from the granuloma core and cuff relative to B cell-rich regions. Moreover, live imaging of granuloma explants show that intralesional CD4 T cell motility is reduced after SIV co-infection. Thus, granuloma CD4 T cells may be decimated before many co-infected individuals experience the first symptoms of acute HIV infection.


Subject(s)
Coinfection , HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Tuberculosis , Animals , CD4-Positive T-Lymphocytes , Coinfection/pathology , Granuloma/pathology , HIV Infections/complications , HIV Infections/pathology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/complications , Simian Acquired Immunodeficiency Syndrome/pathology , Tuberculosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...